Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Microbiol Spectr ; 11(3): e0256422, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: covidwho-2322171

RESUMO

The emerging virus SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2 virus), agent of COVID-19, appeared in December 2019 in Wuhan, China, and became a serious threat to global health and public safety. Many COVID-19 vaccines have been approved and licensed around the world. Most of the developed vaccines include S protein and induce an antibody-based immune response. Additionally, T-cell response to the SARS-CoV-2 antigens could be beneficial for combating the infection. The type of immune response is greatly dependent not only on the antigen, but also on adjuvants used in vaccine formulation. Here, we compared the effect of four different adjuvants (AddaS03, Alhydrogel/MPLA, Alhydrogel/ODN2395, Quil A) on the immunogenicity of a mixture of recombinant RBD and N SARS-CoV-2 proteins. We have analyzed the antibody and T-cell response specific to RBD and N proteins and assessed the impact of adjuvants on virus neutralization. Our results clearly indicated that Alhydrogel/MPLA and Alhydrogel/ODN2395 adjuvants elicited the higher titers of specific and cross-reactive antibodies to S protein variants from various SARS-CoV-2 and SARS-CoV-1 strains. Moreover, Alhydrogel/ODN2395 stimulated high cellular response to both antigens, as assessed by IFN-γ production. Importantly, sera collected from mice immunized with RBD/N cocktail in combination with these adjuvants exhibited neutralizing activity against the authentic SARS-CoV-2 virus as well as particles pseudotyped with S protein from various virus variants. The results from our study demonstrate the immunogenic potential of RBD and N antigens and point out the importance of adjuvants selection in vaccine formulation in order to enhance the immunological response. IMPORTANCE Although several COVID-19 vaccines have been approved worldwide, continuous emergence of new SARS-CoV-2 variants calls for new efficient vaccines against them, providing long-lasting immunity. As the immune response after vaccination is dependent not only on antigen used, but also on other vaccine components, e.g., adjuvants, the purpose of this work was to study the effect of different adjuvants on the immunogenicity of RBD/N SARS-CoV-2 cocktail proteins. In this work, it has been shown that immunization with both antigens plus the different adjuvants studied elicited higher Th1 and Th2 responses against RBD and N, which contributed to higher neutralization of the virus. The obtained results can be used for design of new vaccines, not only against SARS-CoV-2, but also against other important viral pathogens.


Assuntos
COVID-19 , Vacinas Virais , Animais , Camundongos , Humanos , SARS-CoV-2 , Vacinas contra COVID-19 , COVID-19/prevenção & controle , Hidróxido de Alumínio , Anticorpos Antivirais , Anticorpos Neutralizantes , Imunogenicidade da Vacina
2.
Sci Transl Med ; 14(629): eabj5305, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: covidwho-2325160

RESUMO

Global deployment of vaccines that can provide protection across several age groups is still urgently needed to end the COVID-19 pandemic, especially in low- and middle-income countries. Although vaccines against SARS-CoV-2 based on mRNA and adenoviral vector technologies have been rapidly developed, additional practical and scalable SARS-CoV-2 vaccines are required to meet global demand. Protein subunit vaccines formulated with appropriate adjuvants represent an approach to address this urgent need. The receptor binding domain (RBD) is a key target of SARS-CoV-2 neutralizing antibodies but is poorly immunogenic. We therefore compared pattern recognition receptor (PRR) agonists alone or formulated with aluminum hydroxide (AH) and benchmarked them against AS01B and AS03-like emulsion-based adjuvants for their potential to enhance RBD immunogenicity in young and aged mice. We found that an AH and CpG adjuvant formulation (AH:CpG) produced an 80-fold increase in anti-RBD neutralizing antibody titers in both age groups relative to AH alone and protected aged mice from the SARS-CoV-2 challenge. The AH:CpG-adjuvanted RBD vaccine elicited neutralizing antibodies against both wild-type SARS-CoV-2 and the B.1.351 (beta) variant at serum concentrations comparable to those induced by the licensed Pfizer-BioNTech BNT162b2 mRNA vaccine. AH:CpG induced similar cytokine and chemokine gene enrichment patterns in the draining lymph nodes of both young adult and aged mice and enhanced cytokine and chemokine production in human mononuclear cells of younger and older adults. These data support further development of AH:CpG-adjuvanted RBD as an affordable vaccine that may be effective across multiple age groups.


Assuntos
Hidróxido de Alumínio , COVID-19 , Idoso , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacina BNT162 , Vacinas contra COVID-19 , Humanos , Camundongos , Pandemias , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vacinas Sintéticas , Vacinas de mRNA
3.
J Water Health ; 21(3): 354-360, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: covidwho-2301318

RESUMO

Wastewater-based epidemiology (WBE) could be useful as an early warning system for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic spread. Viruses are highly diluted in wastewater. Therefore, a virus concentration step is needed for SARS-CoV-2 wastewater detection. We tested the efficiency of three wastewater viral concentration methods: ultrafiltration (UF), electronegative membrane filtration and aluminum hydroxide adsorption-elution. We spiked wastewater with inactivated SARS-CoV-2 and we collected 20 other wastewater samples from five sites in Tunisia. Samples were concentrated by the three methods and SARS-CoV-2 was quantified by reverse transcription digital PCR (RT-dPCR). The most efficient method was UF with a mean SARS-CoV-2 recovery of 54.03 ± 8.25. Moreover, this method provided significantly greater mean concentration and virus detection ability (95%) than the two other methods. The second-most efficient method used electronegative membrane filtration with a mean SARS-CoV-2 recovery of 25.59 ± 5.04% and the least efficient method was aluminum hydroxide adsorption-elution. This study suggests that the UF method provides rapid and straightforward recovery of SARS-CoV-2 in wastewater.


Assuntos
Hidróxido de Alumínio , COVID-19 , Humanos , SARS-CoV-2 , Águas Residuárias , Adsorção
4.
Appl Microbiol Biotechnol ; 107(11): 3429-3441, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: covidwho-2305306

RESUMO

Spike protein from SARS-CoV-2, the etiologic agent of the COVID-19 pandemic disease, constitutes a structural protein that proved to be the main responsible for neutralizing antibody production. Thus, its sequence is highly considered for the design of candidate vaccines. Animal cell culture represents the best option for the production of subunit vaccines based on recombinant proteins since they introduce post-translational modifications that are important to mimic the natural antigenic epitopes. Particularly, the human cell line HEK293T has been explored and used for the production of biotherapeutics since the products derived from them present human-like post-translational modifications that are important for the protein's activity and immunogenicity. The aim of this study was to produce and characterize a potential vaccine for COVID-19 based on the spike ectodomain (S-ED) of SARS-CoV-2 and two different adjuvants: aluminum hydroxide (AH) and immune-stimulating complexes (ISCOMs). The S-ED was produced in sHEK293T cells using a 1-L stirred tank bioreactor operated in perfusion mode and purified. S-ED characterization revealed the expected size and morphology. High N-glycan content was confirmed. S-ED-specific binding with the hACE2 (human angiotensin-converting enzyme 2) receptor was verified. The immunogenicity of S-ED was evaluated using AH and ISCOMs. Both formulations demonstrated the presence of anti-RBD antibodies in the plasma of immunized mice, being significantly higher for the latter adjuvant. Also, higher levels of IFN-γ and IL-4 were detected after the ex vivo immune stimulation of spleen-derived MNCs from ISCOMs immunized mice. Further analysis confirmed that S-ED/ISCOMs elicit neutralizing antibodies against SARS-CoV-2. KEY POINTS: Trimeric SARS-CoV-2 S-ED was produced in stable recombinant sHEK cells in serum-free medium. A novel S-ED vaccine formulation induced potent humoral and cellular immunity. S-ED formulated with ISCOMs adjuvant elicited a highly neutralizing antibody titer.


Assuntos
COVID-19 , ISCOMs , Humanos , Camundongos , Animais , Vacinas contra COVID-19 , Glicoproteína da Espícula de Coronavírus/genética , COVID-19/prevenção & controle , SARS-CoV-2 , Complexo Antígeno-Anticorpo , Pandemias/prevenção & controle , Células HEK293 , Anticorpos Antivirais , Anticorpos Neutralizantes , Adjuvantes Imunológicos , Hidróxido de Alumínio
5.
PLoS Negl Trop Dis ; 17(3): e0011236, 2023 03.
Artigo em Inglês | MEDLINE | ID: covidwho-2293922

RESUMO

BACKGROUND: Recombinant Schistosoma mansoni Tetraspanin-2 formulated on Alhydrogel (Sm-TSP-2/Alhydrogel) is being developed to prevent intestinal and hepatic disease caused by S. mansoni. The tegumentary Sm-TSP-2 antigen was selected based on its unique recognition by cytophilic antibodies in putatively immune individuals living in areas of ongoing S. mansoni transmission in Brazil, and preclinical studies in which vaccination with Sm-TSP-2 protected mice following infection challenge. METHODS: A randomized, observer-blind, controlled, Phase 1b clinical trial was conducted in 60 healthy adults living in a region of Brazil with ongoing S. mansoni transmission. In each cohort of 20 participants, 16 were randomized to receive one of two formulations of Sm-TSP-2 vaccine (adjuvanted with Alhydrogel only, or with Alhydrogel plus the Toll-like receptor-4 agonist, AP 10-701), and 4 to receive Euvax B hepatitis B vaccine. Successively higher doses of antigen (10 µg, 30 µg, and 100 µg) were administered in a dose-escalation fashion, with progression to the next dose cohort being dependent upon evaluation of 7-day safety data after all participants in the preceding cohort had received their first dose of vaccine. Each participant received 3 intramuscular injections of study product at intervals of 2 months and was followed for 12 months after the third vaccination. IgG and IgG subclass antibody responses to Sm-TSP-2 were measured by qualified indirect ELISAs at pre- and post-vaccination time points through the final study visit. RESULTS: Sm-TSP-2/Alhydrogel administered with or without AP 10-701 was well-tolerated in this population. The most common solicited adverse events were mild injection site tenderness and pain, and mild headache. No vaccine-related serious adverse events or adverse events of special interest were observed. Groups administered Sm-TSP-2/Alhydrogel with AP 10-701 had higher post-vaccination levels of antigen-specific IgG antibody. A significant dose-response relationship was seen in those administered Sm-TSP-2/Alhydrogel with AP 10-701. Peak anti-Sm-TSP-2 IgG levels were observed approximately 2 weeks following the third dose, regardless of Sm-TSP-2 formulation. IgG levels fell to low levels by Day 478 in all groups except the 100 µg with AP 10-701 group, in which 57% of subjects (4 of 7) still had IgG levels that were ≥4-fold higher than baseline. IgG subclass levels mirrored those of total IgG, with IgG1 being the predominant subclass response. CONCLUSIONS: Vaccination of adults with Sm-TSP-2/Alhydrogel in an area of ongoing S. mansoni transmission was safe, minimally reactogenic, and elicited significant IgG and IgG subclass responses against the vaccine antigen. These promising results have led to initiation of a Phase 2 clinical trial of this vaccine in an endemic region of Uganda. TRIAL REGISTRATION: NCT03110757.


Assuntos
Esquistossomose mansoni , Animais , Humanos , Camundongos , Adjuvantes Imunológicos , Hidróxido de Alumínio , Brasil , Imunoglobulina G , Schistosoma mansoni , Vacinas Protozoárias
6.
Hum Vaccin Immunother ; 19(1): 2186110, 2023 12 31.
Artigo em Inglês | MEDLINE | ID: covidwho-2260019

RESUMO

COVID-19 pandemic caused by SARS-CoV-2 infection has an impact on global public health and social economy. The emerging immune escape of SARS-CoV-2 variants pose great challenges to the development of vaccines based on original strains. The development of second-generation COVID-19 vaccines to induce immune responses with broad-spectrum protective effects is a matter of great urgency. Here, a prefusion-stabilized spike (S) trimer protein based on B.1.351 variant was expressed and prepared with CpG7909/aluminum hydroxide dual adjuvant to investigate the immunogenicity in mice. The results showed that the candidate vaccine could induce a significant receptor binding domain-specific antibody response and a substantial interferon-γ-mediated immune response. Furthermore, the candidate vaccine also elicited robust cross-neutralization against the pseudoviruses of the original strain, Beta variant, Delta variant and Omicron variant. The vaccine strategy of S-trimer protein formulated with CpG7909/aluminum hydroxide dual adjuvant may be considered a means to increase vaccine effectiveness against future variants.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Animais , Humanos , Camundongos , SARS-CoV-2 , COVID-19/prevenção & controle , Hidróxido de Alumínio , Pandemias , Adjuvantes Imunológicos , Anticorpos Neutralizantes , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos Antivirais
7.
Vaccine ; 41(17): 2781-2792, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: covidwho-2276426

RESUMO

Cost-effective, and accessible vaccines are needed for mass immunization to control the ongoing coronavirus disease 2019 (COVID-19), especially in low- and middle-income countries (LMIC).A plant-based vaccine is an attractive technology platform since the recombinant proteins can be easily produced at large scale and low cost. For the recombinant subunit-based vaccines, effective adjuvants are crucial to enhance the magnitude and breadth of immune responses elicited by the vaccine. In this study, we report a preclinical evaluation of the immunogenicity, efficacy and safety of a recombinant plant-based SARS-CoV-2 RBD vaccine formulated with 3M-052 (TLR7/8 agonist)-Alum adjuvant. This vaccine formulation, named Baiya SARS-CoV-2 Vax 2, induced significant levels of RBD-specific IgG and neutralizing antibody responses in mice. A viral challenge study using humanized K18-hACE2 mice has shown that animals vaccinated with two doses of Baiya SARS-CoV-2 Vax 2 established immune protection against SARS-CoV-2. A study in nonhuman primates (cynomolgus monkeys) indicated that immunization with two doses of Baiya SARS-CoV-2 Vax 2 was safe, well tolerated, and induced neutralizing antibodies against the prototype virus and other viral variants (Alpha, Beta, Gamma, Delta, and Omicron subvariants). The toxicity of Baiya SARS-CoV-2 Vax 2 was further investigated in Jcl:SD rats, which demonstrated that a single dose and repeated doses of Baiya SARS-CoV-2 Vax 2 were well tolerated and no mortality or unanticipated findings were observed. Overall, these preclinical findings support further clinical development of Baiya SARS-CoV-2 Vax 2.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Camundongos , Ratos , Ratos Sprague-Dawley , COVID-19/prevenção & controle , Hidróxido de Alumínio , Adjuvantes Imunológicos , Anticorpos Neutralizantes , Macaca fascicularis , Anticorpos Antivirais , Glicoproteína da Espícula de Coronavírus/genética , Imunogenicidade da Vacina
8.
J Immunol ; 210(9): 1257-1271, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: covidwho-2280819

RESUMO

Vaccines against SARS-CoV-2 that induce mucosal immunity capable of preventing infection and disease remain urgently needed. In this study, we demonstrate the efficacy of Bordetella colonization factor A (BcfA), a novel bacteria-derived protein adjuvant, in SARS-CoV-2 spike-based prime-pull immunizations. We show that i.m. priming of mice with an aluminum hydroxide- and BcfA-adjuvanted spike subunit vaccine, followed by a BcfA-adjuvanted mucosal booster, generated Th17-polarized CD4+ tissue-resident memory T cells and neutralizing Abs. Immunization with this heterologous vaccine prevented weight loss following challenge with mouse-adapted SARS-CoV-2 (MA10) and reduced viral replication in the respiratory tract. Histopathology showed a strong leukocyte and polymorphonuclear cell infiltrate without epithelial damage in mice immunized with BcfA-containing vaccines. Importantly, neutralizing Abs and tissue-resident memory T cells were maintained until 3 mo postbooster. Viral load in the nose of mice challenged with the MA10 virus at this time point was significantly reduced compared with naive challenged mice and mice immunized with an aluminum hydroxide-adjuvanted vaccine. We show that vaccines adjuvanted with alum and BcfA, delivered through a heterologous prime-pull regimen, provide sustained protection against SARS-CoV-2 infection.


Assuntos
Hidróxido de Alumínio , COVID-19 , Humanos , Animais , Camundongos , Imunidade nas Mucosas , Vacinas contra COVID-19 , COVID-19/prevenção & controle , SARS-CoV-2 , Imunização , Adjuvantes Imunológicos , Anticorpos Antivirais , Anticorpos Neutralizantes
9.
Front Immunol ; 14: 941281, 2023.
Artigo em Inglês | MEDLINE | ID: covidwho-2228948

RESUMO

SARS-CoV-2 continues to pose a threat to human health as new variants emerge and thus a diverse vaccine pipeline is needed. We evaluated SARS-CoV-2 HexaPro spike protein formulated in Alhydrogel® (aluminium oxyhydroxide) in Syrian hamsters, using an accelerated two dose regimen (given 10 days apart) and a standard regimen (two doses given 21 days apart). Both regimens elicited spike- and RBD-specific IgG antibody responses of similar magnitude, but in vitro virus neutralization was low or undetectable. Despite this, the accelerated two dose regimen offered reduction in viral load and protected against lung pathology upon challenge with homologous SARS-CoV-2 virus (Wuhan-Hu-1). This highlights that vaccine-induced protection against SARS-CoV-2 disease can be obtained despite low neutralizing antibody levels and suggests that accelerated vaccine schedules may be used to confer rapid protection against SARS-CoV-2 disease.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Cricetinae , Humanos , Hidróxido de Alumínio , Mesocricetus , COVID-19/prevenção & controle , Vacinação , Anticorpos Neutralizantes
10.
Int J Pharm ; 632: 122583, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: covidwho-2165405

RESUMO

The objective of this "proof-of-concept" study was to evaluate the synergistic effect of a subunit microparticulate vaccine and microneedles (MN) assisted vaccine delivery system against a human coronavirus. Here, we formulated PLGA polymeric microparticles (MPs) encapsulating spike glycoprotein (GP) of SARS-CoV as the model antigen. Similarly, we formulated adjuvant MPs encapsulating Alhydrogel® and AddaVax™. The antigen/adjuvant MPs were characterized and tested in vitro for immunogenicity. We found that the antigen/adjuvant MPs were non-cytotoxic in vitro. The spike GP MPs + Alhydrogel® MPs + AddaVax™ MPs showed enhanced immunogenicity in vitro as confirmed through the release of nitrite, autophagy, and antigen presenting molecules with their co-stimulatory molecules. Next, we tested the in vivo efficacy of the spike GP MP vaccine with and without adjuvant MPs in mice vaccinated using MN. The spike GP MPs + Alhydrogel® MPs + AddaVax™ MPs induced heightened spike GP-specific IgG, IgG1 and IgG2a antibodies in mice. Also, spike GP MPs + Alhydrogel® MPs + AddaVax™ MPs enhanced expression of CD4+ and CD8+ T cells in secondary lymphoid organ like spleen. These results indicated spike GP-specific humoral immunity and cellular immunity in vivo. Thus, we employed the benefits of both the subunit vaccine MPs and dissolving MN to form a non-invasive and effective vaccination strategy against human coronaviruses.


Assuntos
Síndrome Respiratória Aguda Grave , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Humanos , Animais , Camundongos , Hidróxido de Alumínio , Síndrome Respiratória Aguda Grave/prevenção & controle , Modelos Animais de Doenças , Adjuvantes Imunológicos , Imunidade Celular , Antígenos , Vacinas de Subunidades Antigênicas , Imunidade Humoral , Anticorpos Antivirais
11.
Immun Inflamm Dis ; 10(12): e748, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: covidwho-2127751

RESUMO

INTRODUCTION: Coronavirus disease (COVID-19) is ongoing as a global epidemic and there is still a need to develop much safer and more effective new vaccines that can also be easily adapted to important variants of the pathogen. In the present study in this direction, we developed a new COVID-19 vaccine, composed of two critical antigenic fragments of the S1 and S2 region of severe acute respiratory syndrome coronavirus 2 as well as the whole nucleocapsid protein (N), which was formulated with either alum or alum plus monophosphoryl lipid A (MPLA) adjuvant combinations. METHODS: From within the spike protein S1 region, a fragmented protein P1 (MW:33 kDa) which includes the receptor-binding domain (RBD), another fragment protein P2 (MW:17.6) which contains important antigenic epitopes within the spike protein S2 region, and N protein (MW:46 kDa) were obtained after recombinant expression of the corresponding gene regions in Escherichia coli BL21. For use in immunization studies, three proteins were adsorbed with aluminum hydroxide gel and with the combination of aluminum hydroxide gel plus MPLA. RESULTS: Each of the three protein antigens produced strong reactions in enzyme-linked immunosorbent assays and Western blot analysis studies performed with convalescent COVID-19 patient sera. In mice, these combined protein vaccine candidates elicited high titer anti-P1, anti-P2, and anti-N IgG and IgG2a responses. These also induced highly neutralizing antibodies and elicited significant cell-mediated immunity as demonstrated by enhanced antigen-specific levels of interferon-γ (INF-γ) in the splenocytes of immunized mice. CONCLUSION: The results of this study showed that formulations of the three proteins with Alum or Alum + MPLA are effective in terms of humoral and cellular responses. However, since the Alum + MPLA formulation appears to be superior in Th1 response, this vaccine candidate may be recommended mainly for the elderly and immunocompromised individuals. We also believe that the alum-only formulation will provide great benefits for adults, young adolescents, and children.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Camundongos , Animais , Humanos , Proteínas do Nucleocapsídeo , COVID-19/prevenção & controle , Hidróxido de Alumínio , Glicoproteína da Espícula de Coronavírus/genética , Vacinas de Subunidades Antigênicas
12.
Viruses ; 14(9)2022 08 24.
Artigo em Inglês | MEDLINE | ID: covidwho-1997806

RESUMO

The research and development (R&D) of novel adjuvants is an effective measure for improving the immunogenicity of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) recombinant protein vaccine. Toward this end, we designed a novel single-stranded RNA-based adjuvant, L2, from the SARS-CoV-2 prototype genome. L2 could initiate retinoic acid-inducible gene-I signaling pathways to effectively activate the innate immunity. ZF2001, an aluminum hydroxide (Al) adjuvanted SARS-CoV-2 recombinant receptor binding domain (RBD) subunit vaccine with emergency use authorization in China, was used for comparison. L2, with adjuvant compatibility with RBD, elevated the antibody response to a level more than that achieved with Al, CpG 7909, or poly(I:C) as adjuvants in mice. L2 plus Al with composite adjuvant compatibility with RBD markedly improved the immunogenicity of ZF2001; in particular, neutralizing antibody titers increased by about 44-fold for Omicron, and the combination also induced higher levels of antibodies than CpG 7909/poly(I:C) plus Al in mice. Moreover, L2 and L2 plus Al effectively improved the Th1 immune response, rather than the Th2 immune response. Taken together, L2, used as an adjuvant, enhanced the immune response of the SARS-CoV-2 recombinant RBD protein vaccine in mice. These findings should provide a basis for the R&D of novel RNA-based adjuvants.


Assuntos
COVID-19 , Vacinas Virais , Adjuvantes Imunológicos , Hidróxido de Alumínio , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Camundongos , Camundongos Endogâmicos BALB C , RNA , Proteínas Recombinantes/genética , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Tretinoína , Vacinas de Subunidades Antigênicas/genética , Vacinas Sintéticas/genética
13.
Front Immunol ; 12: 803647, 2021.
Artigo em Inglês | MEDLINE | ID: covidwho-1911034

RESUMO

The newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causing a spread of coronavirus disease 2019 (COVID-19) globally. In order to end the COVID-19 pandemic, an effective vaccine against SARS-CoV-2 must be produced at low cost and disseminated worldwide. The spike (S) protein of coronaviruses plays a pivotal role in the infection to host cells. Therefore, targeting the S protein is one of the most rational approaches in developing vaccines and therapeutic agents. In this study, we optimized the expression of secreted trimerized S protein of SARS-CoV-2 using a silkworm-baculovirus expression vector system and evaluated its immunogenicity in mice. The results showed that the S protein forming the trimeric structure was the most stable when the chicken cartilage matrix protein was used as the trimeric motif and could be purified in large amounts from the serum of silkworm larvae. The purified S protein efficiently induced antigen-specific antibodies in mouse serum without adjuvant, but its ability to induce neutralizing antibodies was low. After examining several adjuvants, the use of Alum adjuvant was the most effective in inducing strong neutralizing antibody induction. We also examined the adjuvant effect of paramylon from Euglena gracilis when administered with the S protein. Our results highlight the effectiveness and suitable construct design of the S protein produced in silkworms for the subunit vaccine development against SARS-CoV-2.


Assuntos
Compostos de Alúmen/farmacologia , Hidróxido de Alumínio/farmacologia , Bombyx/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Adjuvantes Imunológicos/farmacologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , Vacinas contra COVID-19/imunologia , Linhagem Celular , Galinhas/genética , Galinhas/imunologia , Chlorocebus aethiops , Euglena gracilis/imunologia , Infecções por Euglenozoa/imunologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Pandemias/prevenção & controle , SARS-CoV-2/imunologia , Vacinação/métodos , Células Vero
14.
Sci Rep ; 12(1): 7201, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: covidwho-1890248

RESUMO

Since the start of the COVID-19 pandemic, different methods have been used to detect the presence of genetic material of SARS-CoV-2 in wastewater. The use of wastewater for SARS-CoV-2 RNA detection and quantification showed different problems, associated to the complexity of the matrix and the lack of standard methods used to analyze the presence of an enveloped virus, such as coronavirus. Different strategies for the concentration process were selected to carry out the detection and quantification of SARS-CoV-2 RNA in wastewater: (a) aluminum hydroxide adsorption-precipitation, (b) pre-treatment with glycine buffer and precipitation with polyethylene-glycol (PEG) and (c) ultrafiltration (Centricon). Our results showed that the reduction of organic matter, using the pre-treatment with glycine buffer before the concentration with Centricon or aluminum hydroxide adsorption-precipitation, improved the recovery percentage of the control virus, Mengovirus (MgV) (8.37% ± 5.88 n = 43; 6.97% ± 6.51 n = 20, respectively), and the detection of SARS-CoV-2 in comparison with the same methodology without a pre-treatment. For the concentration with Centricon, the use of 100 mL of wastewater, instead of 200 mL, increased the MgV recovery, and allowed a positive detection of SARS-CoV-2 with N1 and N2 targets. The quantity of SARS-CoV-2 RNA detected in wastewater did not show a direct correlation with the number of confirmed cases, but the study of its upwards or downwards trend over time enabled the detection of an increase of epidemiological data produced in September 2020, January 2021 and April 2021.


Assuntos
COVID-19 , RNA Viral , Hidróxido de Alumínio , COVID-19/diagnóstico , COVID-19/epidemiologia , Glicina , Humanos , Pandemias , RNA Viral/genética , SARS-CoV-2/genética , Águas Residuárias
15.
Eur J Pharm Biopharm ; 176: 43-53, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: covidwho-1850998

RESUMO

Nanoparticles-based multivalent antigen display has the capability of mimicking natural virus infection characteristics, making it useful for eliciting potent long-lasting immune response. Several vaccines are developed against global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However these subunit vaccines use mammalian expression system, hence mass production with rapid pace is a bigger challenge. In contrast E. coli based subunit vaccine production circumvents these limitations. The objective of the present investigation was to develop nanoparticle vaccine with multivalent display of receptor binding domain (RBD) of SARS-CoV-2 expressed in E. coli. Results showed that RBD entrapped PLA (Poly lactic acid) nanoparticle in combination with aluminum hydroxide elicited 9-fold higher immune responses as compared to RBD adsorbed aluminum hydroxide, a common adjuvant used for human immunization. It was interesting to note that RBD entrapped PLA nanoparticle with aluminum hydroxide not only generated robust and long-lasting antibody response but also provided Th1 and Th2 balanced immune response. Moreover, challenge with 1 µg of RBD alone was able to generate secondary antibody response, suggesting that immunization with RBD-PLA nanoparticles has the ability to elicit memory antibody against RBD. Plaque assay revealed that the antibody generated using the polymeric formulation was able to neutralize SARS-CoV-2. The RBD entrapped PLA nanoparticles blended with aluminum hydroxide thus has potential to develop asa subunit vaccine against COVID-19.


Assuntos
COVID-19 , Nanopartículas , Hidróxido de Alumínio , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Formação de Anticorpos , Vacinas contra COVID-19 , Escherichia coli , Humanos , Mamíferos , Nanopartículas/química , Poliésteres , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química , Vacinas de Subunidades Antigênicas
16.
N Engl J Med ; 386(17): 1615-1626, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: covidwho-1815678

RESUMO

BACKGROUND: Respiratory syncytial virus (RSV), a major cause of illness and death in infants worldwide, could be prevented by vaccination during pregnancy. The efficacy, immunogenicity, and safety of a bivalent RSV prefusion F protein-based (RSVpreF) vaccine in pregnant women and their infants are uncertain. METHODS: In a phase 2b trial, we randomly assigned pregnant women, at 24 through 36 weeks' gestation, to receive either 120 or 240 µg of RSVpreF vaccine (with or without aluminum hydroxide) or placebo. The trial included safety end points and immunogenicity end points that, in this interim analysis, included 50% titers of RSV A, B, and combined A/B neutralizing antibodies in maternal serum at delivery and in umbilical-cord blood, as well as maternal-to-infant transplacental transfer ratios. RESULTS: This planned interim analysis included 406 women and 403 infants; 327 women (80.5%) received RSVpreF vaccine. Most postvaccination reactions were mild to moderate; the incidence of local reactions was higher among women who received RSVpreF vaccine containing aluminum hydroxide than among those who received RSVpreF vaccine without aluminum hydroxide. The incidences of adverse events in the women and infants were similar in the vaccine and placebo groups; the type and frequency of these events were consistent with the background incidences among pregnant women and infants. The geometric mean ratios of 50% neutralizing titers between the infants of vaccine recipients and those of placebo recipients ranged from 9.7 to 11.7 among those with RSV A neutralizing antibodies and from 13.6 to 16.8 among those with RSV B neutralizing antibodies. Transplacental neutralizing antibody transfer ratios ranged from 1.41 to 2.10 and were higher with nonaluminum formulations than with aluminum formulations. Across the range of assessed gestational ages, infants of women who were immunized had similar titers in umbilical-cord blood and similar transplacental transfer ratios. CONCLUSIONS: RSVpreF vaccine elicited neutralizing antibody responses with efficient transplacental transfer and without evident safety concerns. (Funded by Pfizer; ClinicalTrials.gov number, NCT04032093.).


Assuntos
Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Vírus Sincicial Respiratório Humano , Proteínas Virais de Fusão , Hidróxido de Alumínio/efeitos adversos , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Feminino , Humanos , Lactente , Gravidez , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinas contra Vírus Sincicial Respiratório/efeitos adversos , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vacinas contra Vírus Sincicial Respiratório/uso terapêutico , Vírus Sincicial Respiratório Humano/imunologia , Vacinação , Proteínas Virais de Fusão/imunologia
17.
Cell ; 185(4): 614-629.e21, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: covidwho-1676664

RESUMO

Activation of the innate immune system via pattern recognition receptors (PRRs) is key to generate lasting adaptive immunity. PRRs detect unique chemical patterns associated with invading microorganisms, but whether and how the physical properties of PRR ligands influence the development of the immune response remains unknown. Through the study of fungal mannans, we show that the physical form of PRR ligands dictates the immune response. Soluble mannans are immunosilent in the periphery but elicit a potent pro-inflammatory response in the draining lymph node (dLN). By modulating the physical form of mannans, we developed a formulation that targets both the periphery and the dLN. When combined with viral glycoprotein antigens, this mannan formulation broadens epitope recognition, elicits potent antigen-specific neutralizing antibodies, and confers protection against viral infections of the lung. Thus, the physical properties of microbial ligands determine the outcome of the immune response and can be harnessed for vaccine development.


Assuntos
Adjuvantes Imunológicos/farmacologia , Antígenos Virais/imunologia , Candida albicans/química , Mananas/imunologia , Hidróxido de Alumínio/química , Animais , Anticorpos Neutralizantes/imunologia , Especificidade de Anticorpos/imunologia , Linfócitos B/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Chlorocebus aethiops , Epitopos/imunologia , Imunidade Inata , Imunização , Inflamação/patologia , Interferons/metabolismo , Lectinas Tipo C/metabolismo , Ligantes , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Linfonodos/imunologia , Linfonodos/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Seios Paranasais/metabolismo , Subunidades Proteicas/metabolismo , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Solubilidade , Glicoproteína da Espícula de Coronavírus/metabolismo , Linfócitos T/imunologia , Fator de Transcrição RelB/metabolismo , Células Vero , beta-Glucanas/metabolismo
18.
Lancet Respir Med ; 9(12): 1396-1406, 2021 12.
Artigo em Inglês | MEDLINE | ID: covidwho-1621134

RESUMO

BACKGROUND: MVC-COV1901, a recombinant protein vaccine containing pre-fusion-stabilised spike protein S-2P adjuvanted with CpG 1018 and aluminium hydroxide, has been shown to be well tolerated with a good safety profile in healthy adults aged 20-49 years in a phase 1 trial, and provided a good cellular and humoral immune responses. We present the interim safety, tolerability, and immunogenicity results of a phase 2 clinical trial of the MVC-COV1901 vaccine in Taiwan. METHODS: This is a large-scale, double-blind, randomised, placebo-controlled phase 2 trial done at ten medical centres and one regional hospital in Taiwan. Individuals aged 20 years or older who were generally healthy or had stable pre-existing medical conditions were eligible for enrolment. Exclusion criteria included (but were not limited to) travel overseas within 14 days of screening, intention to travel overseas within 6 months of the screening visit, and the absence of prespecified medical conditions, including immunosuppressive illness, a history of autoimmune disease, malignancy with risk to recur, a bleeding disorder, uncontrolled HIV infection, uncontrolled hepatitis B and C virus infections, SARS-CoV-1 or SARS-CoV-2 infections, an allergy to any vaccine, or a serious medical condition that could interfere with the study. Study participants were randomly assigned (6:1) to receive two doses of either MVC-COV1901 or placebo, administered via intramuscular injection on day 1 and day 29. MVC-COV1901 contained 15 µg of S-2P protein adjuvanted with 750 µg CpG 1018 and 375 µg aluminium hydroxide in a 0·5 mL aqueous solution, and the placebo contained the same volume of saline. Randomisation was done centrally by use of an interactive web response system, stratified by age (≥20 to <65 years and ≥65 years). Participants and investigators were masked to group assignment. The primary outcomes were to evaluate the safety, tolerability, and immunogenicity of MVC-COV1901 from day 1 (the day of the first dose) to day 57 (28 days after the second dose). Safety was assessed in all participants who received at least one dose. Immunogenicity was assessed by measuring geometric mean titres (GMTs) and seroconversion rates of neutralising antibody and antigen-specific IgG in the per-protocol population. This study is registered with ClinicalTrials.gov, NCT04695652. FINDINGS: Of 4173 individuals screened between Dec 30, 2020, and April 2, 2021, 3854 were enrolled and randomly assigned: 3304 to the MVC-COV1901 group and 550 to the placebo group. A total of 3844 participants (3295 in the MVC-COV1901 group and 549 in the placebo group) were included in the safety analysis set, and 1053 participants (903 and 150) had received both doses and were included in the per-protocol immunogenicity analysis set. From the start of this phase 2 trial to the time of interim analysis, no vaccine-related serious adverse events were recorded. The most common solicited adverse events in all study participants were pain at the injection site (2346 [71·2%] of 3295 in the MVC-COV1901 group and 128 [23·3%] of 549 in the placebo group), and malaise or fatigue (1186 [36·0%] and 163 [29·7%]). Fever was rarely reported (23 [0·7%] and two [0·4%]). At 28 days after the second dose of MVC-COV1901, the wild-type SARS-CoV-2 neutralising antibody GMT was 662·3 (95% CI 628·7-697·8; 408·5 IU/mL), the GMT ratio (geometric mean fold increase in titres at day 57 vs baseline) was 163·2 (155·0-171·9), and the seroconversion rate was 99·8% (95% CI 99·2-100·0). INTERPRETATION: MVC-COV1901 has a good safety profile and elicits promising immunogenicity responses. These data support MVC-COV1901 to enter phase 3 efficacy trials. FUNDING: Medigen Vaccine Biologics and Taiwan Centres for Disease Control, Ministry of Health and Welfare.


Assuntos
Adjuvantes Imunológicos , Hidróxido de Alumínio , Vacinas contra COVID-19/imunologia , COVID-19 , Infecções por HIV , Oligodesoxirribonucleotídeos , Adulto , Idoso , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Método Duplo-Cego , Humanos , Pessoa de Meia-Idade , SARS-CoV-2 , Taiwan , Adulto Jovem
19.
Vaccine ; 39(48): 7001-7011, 2021 11 26.
Artigo em Inglês | MEDLINE | ID: covidwho-1488001

RESUMO

COVID-19 pandemic has severely impacted the public health and social economy worldwide. A safe, effective, and affordable vaccine against SARS-CoV-2 infections/diseases is urgently needed. We have been developing a recombinant vaccine based on a prefusion-stabilized spike trimer of SARS-CoV-2 and formulated with aluminium hydroxide and CpG 7909. The spike protein was expressed in Chinese hamster ovary (CHO) cells, purified, and prepared as a stable formulation with the dual adjuvant. Immunogenicity studies showed that candidate vaccines elicited robust neutralizing antibody responses and substantial CD4+ T cell responses in both mice and non-human primates. And vaccine-induced neutralizing antibodies persisted at high level for at least 6 months. Challenge studies demonstrated that candidate vaccine reduced the viral loads and inflammation in the lungs of SARS-CoV-2 infected golden Syrian hamsters significantly. In addition, the vaccine-induced antibodies showed cross-neutralization activity against B.1.1.7 and B.1.351 variants. These data suggest candidate vaccine is efficacious in preventing SARS-CoV-2 infections and associated pneumonia, thereby justifying ongoing phase I/II clinical studies in China (NCT04982068 and NCT04990544).


Assuntos
Vacinas contra COVID-19 , COVID-19 , Compostos de Alúmen , Hidróxido de Alumínio , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Células CHO , Cricetinae , Cricetulus , Humanos , Camundongos , Pandemias , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética
20.
Sci Rep ; 11(1): 8761, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: covidwho-1199318

RESUMO

The COVID-19 pandemic presents an unprecedented challenge to global public health. Rapid development and deployment of safe and effective vaccines are imperative to control the pandemic. In the current study, we applied our adjuvanted stable prefusion SARS-CoV-2 spike (S-2P)-based vaccine, MVC-COV1901, to hamster models to demonstrate immunogenicity and protection from virus challenge. Golden Syrian hamsters immunized intramuscularly with two injections of 1 µg or 5 µg of S-2P adjuvanted with CpG 1018 and aluminum hydroxide (alum) were challenged intranasally with SARS-CoV-2. Prior to virus challenge, the vaccine induced high levels of neutralizing antibodies with 10,000-fold higher IgG level and an average of 50-fold higher pseudovirus neutralizing titers in either dose groups than vehicle or adjuvant control groups. Six days after infection, vaccinated hamsters did not display any weight loss associated with infection and had significantly reduced lung pathology and most importantly, lung viral load levels were reduced to lower than detection limit compared to unvaccinated animals. Vaccination with either 1 µg or 5 µg of adjuvanted S-2P produced comparable immunogenicity and protection from infection. This study builds upon our previous results to support the clinical development of MVC-COV1901 as a safe, highly immunogenic, and protective COVID-19 vaccine.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Hidróxido de Alumínio/administração & dosagem , COVID-19/prevenção & controle , Oligodesoxirribonucleotídeos/administração & dosagem , Glicoproteína da Espícula de Coronavírus/imunologia , Hidróxido de Alumínio/imunologia , Animais , Anticorpos Neutralizantes/metabolismo , COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/imunologia , Linhagem Celular , Cricetinae , Feminino , Humanos , Imunização , Injeções Intramusculares , Oligodesoxirribonucleotídeos/imunologia , SARS-CoV-2/imunologia , SARS-CoV-2/fisiologia , Carga Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA